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Abstract—The response of a two-dimensional, multi-layer composite conducting slab, to a sudden change in

the temperature of the surrounding fluid, has been analysed. The solution is of the form of a coupled infinite

scriesin the two space dimensions with an exponential time dependency and in the case of three- and two-layer
slabs, expressions are given in a form suitable for desk calculations.

NOMENCLATURE

A;, B;,C;,D;  constants in the series solution

a; thermal diffusivity of the jth layer
of the slab

B, Biot number, hx,/k,

c; specific heat of the jth layer of the
slab

E,F, G, H; defined by equation (21)

h heat transfer coefficient from the
surface of the slab

J number of layers in the slab

k; thermal conductivity of the jth
layer of the slab

T temperature in the slab

t time

X defined in equation (24)

x position across the slab

X; position of interface between the
jthand (j+ 1)th layers

Xy thickness of the slab

y position along the slab

Y1 length of the slab

Greek symbols

o normalized thermal diffusivity

B normalized thermal conductivity

Y normalized slab length

A,o=1,n =0 Dirac delta function

=0,n#0

n normalized position along the
slab

0 normalized time

2 transverse eigenvalue

u longitudinal eigenvalue

pj density of the jth layer of the slab

T time constant in the jth layer of
the slab

1/ normalized position across the
slab
INTRODUCTION

THE NEED for this work arose from a solar energy space-
heating system, in which a rockbed thermal energy

store is located beneath and in contact with a concrete
slabfloor [1-3]. Energy transfer from the rockbed store
to the housc is by conduction through the floor. It is
necessary to determine a rockbed depth which will give
adequate storage capacity, and the rate of decay of any
temperature variations along the floor after airflow
through the rockbed has ceased, since this will also
influence both the design of the rockbed and the
occupants’ acceptance of the system.

For lightweight houses, which are common in a
number of countries, the thermal mass of the house is
negligible relative to that of the slab and the rockbed.
The surface area of the vertical edges of the slab and the
rockbed is very much less than the floor area and if the
edgesareinsulated, then the heat transfer through them
could be neglected. The heat transfer from the rockbed
to the ground must necessarily be very small after the
system has been operating for some time and for other
than very thin rockbeds, which would have very small
energy storage capacities, the heat transfer from the
ground to the house will be small because of the thermal
resistance of the rockbed.

These observations suggest that a reasonable
representation of the temperature decay in this floor-
space-heating system, after the forced airflow through
the rockbed has ceased, would be given by a two-
dimensional composite slab which is subjected to a
sudden change in the environmental temperature. The
compositeslabis insulated at the bottom and theedges
so that energy is transferred only through the top
surface, as shown in Fig. 1, and it is infinite in the third
dimension.

The one-dimensional infinite composite slab has
been studied quite extensively [4-11], but there
appears to have been no need to consider the two-
dimensional case. There are two forms of composite
slab which are of interest for the space-heating system
mentioned above:

(1) the two layers of the slab in perfect thermal
contact ;.

(2) a resistance between the concrete and the
rockbed, which would be the caseif the rockbed settled
over a period and left a small air gap beneath the
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F1G. 1. The two-dimensional multi-layer composite slab.

concrete, or if the concrete were poured onto a plastic
membrane laid over the rockbed.

A general solution for any multi-layer two-dimensional
slab, whose layers are in perfect thermal contact, is
developed here and then particular solutions for the
above two cases are given. The heat transfer resistance
in case (2) is accommodated by solving a three-layer
slab and choosing an appropriately thin layer between
the two outer layers.

THE J-LAYER COMPOSITE SLAB

The space coordinates and their values at the
boundaries are shown in Fig. 1. The temperature T at
the point (x, y)in the jth layer at time ¢ > 0, is governed
by the two-dimensional diffusion equation, namely

or _ (¥T  &T

o A\axr T ar/)
where g; s the thermal diffusivity of the jth layer and is
given by

a=—1, M

where k, p, and ¢ are the thermal conductivity, the
density and specific heat, respectively. The temperature
T can be measured relative to that of the surroundings
for t > 0 so that for clarity in the equations, the
temperature of the surroundings may be set to zero for
t=0.

The problem has been non-dimensionalized in the
following way : let

x y ta; N
=— = 0= > Y=
Xy Xy Xy Xy
a k;

J J
o =-1, =
i a, ﬂ] k_,’

then the governing equation can be written as

or _ (FT  &T o
20 "\ay? " )
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Consider a solution of equation (2) of the form
T = exp(—a;t}0)(A; cos A3y + B; sin Ag)
x (Cj cos ujn+D;sin py), (3)

where the constant C;is included explicitly for use with
separable initial temperature distributions, then
equation (2) requires that

1} =2+ “)

The boundary conditions are, for 6 > 0

n=0ory, %I—=O, (5)
1
oT
=0, —=0, 6
4 20 ©
ll/ = '//ja TZI:yer A= Lqayer j+1p (7)
and
oT aT
ﬁjw = ﬁj+l’a7’ ®
oT
l,b=—‘l//1= L ﬂlw’: _BtTv )
where
hx,
= 1
B, k, (10)

and his the heat transfer coefficient from the surface of
the slab to the surroundings.

Boundary condition (5) requires, from equation (3),
that D; = 0, and that

45 sin iy = 0,
which gives

(1)

Hence there is an infinite set of eigenvalues in the -
coordinate which satisfy equation(2) and the boundary
conditions, and they have the same value in all the
layers of the composite slab.

Boundary condition (6) requires, from equation (3),
that B, = 0. Boundary condition (7) requires, from
equation (3)

8=, = nrnfy, n=0,1,2,...

exp(—a;t30)(A; cos Aay;+ By sin A0 )C;
=exp(—o; 1"-'12+ 10)(4;44 cos 2,41y
+Bjyysin A0 )C4 . (12)
Since this equation is true for all values of 0
@t} = 01Ty,
or, substituting from equation (4)
a;(;-} +u?) = %jy 1(}-}1» 1+ 42
Then equation (12) becomes
(A cos A+ B; sin 234 )C;

(13)

=(Aj41 €08 g Y5+ By sin A, Y)Chp . (14)
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Similarly, condition (8) requires equation (13) together
with

Bi2A—A;sin Ap);+ Bj cos A )C;
= PBjs1tjer(—Ajeq sin 2y, W
+ B4y cos A )Cisq. (15)

Equations (14) and (15) can be combined into the
following matrix equation

10 Al. [t o
[0 ﬂj)'j:lﬂ[)-jwﬂ [Bj]cj - [O tBi+ l}'.i*' l]

Ajsy
XQ["~}+1‘PJ]|:BI ]CJH’ (16)

i+ 1
where
cos Apy  sin A
QA= ! 7 17
(2] [—sin A cos ).,t//:l a7
Equation (16) can be rewritten as
A; 1 0 -t
C ’“]=Q“ 2 [ ]
o el R PP
1 0 A;
Qv e,
o g fomaliler oo

and condition (9) can be expressed in the following
matrix form

1 0 —AJ —
5 1][0 BJAJ:IQ[J.J%] _BJ]—Q (19)
Now
EPRIR P o
(20)
and

QLAY QT [Aph;- ] = QLA —¥;-0). (21)

Then successively substituting equation (18) into
equation (19), and dividing through by 4,C,, gives

(5, 1] [(1) B?,_J]n[z,(w,—m-l)]
1 0
x 0 Brotryoy | QU1 —¥s-2)]% ...
L TR
(10 1 0
* 1o Baa | QLA(Y2—¥1)] 0 Bty
| B34 Badz
x Q[2¢,] [(1):] =0, (22)
where, from equation (13)
1 172
A= [&—j(;.}+ - “z] . 23)
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The negative root of equation (23) does not give
additional independent solutions and will be ignored.
Hence, the need to match the temperatures and heat
flows at the interfaces requires, from equation (22), that
for each value g, of the infinite set of eigenvalues in
the 5-coordinate, there is an associated infinite set
of ecigenvalues in the y-coordinate 1, where
m=1,2,3,...; from equation (23), the eigenvalues in
the Y-coordinate are different for each of the layers of
the slab. It is interesting to note that whereas for a
homogeneous two-dimensional slab it is sometimes
possible to form a complete solution as the product of
two independent one-dimensional solutions [4],
equation (22) shows that this is never possible for a
composite slab because the eigenvalues 4, for the
different layers in the y-coordinate across the slab are
coupled to each other through the .associated
eigenvalue u, in the x-coordinate along the slab
through equation (23). The complete description of the
temperature in any one of the layers of the slab is

0 @

T=1Y Y exp{—(A2,+ud)0}C;, cos uy

n=0 m=1
X (Ajnm cos }'jnm'l,_"Bjnm Sin )'jnmlnb)' (24)

Generally, the subscripts n and m will not be written
but they are of course always implied.

The coefficients C;4; and C;B; can be expressed in
terms of C, 4, as follows:

A E; F;|l4
C. 3 . J i 1 C,, )
Gl-le el e
where from equation (15)
1 0 ]
E; F
[GJ Hj]=Q_l[)~jl/fj—1] 0 Bj-144-1
i J.
B ]
1 0
X QLA Wj-1—YP-)I% . X 0 Bi2y | QLA Y]
lez_ (26)

It is to be noted that E;and G; are functions of B A
and y;_,, wherei = 1,...,j, only, and are independent
of all the coefficients A; and B, j=1,...,J; this
property of E;and G, is used below to determine 4;and
B;.

If To(f, i) is the temperature distribution in the slab
at § = 0, and noting that from equation (25)
Bj G i

=2 27
it @7)

J
then from equations (24) and (25)

0
TO = z z_:l ClnAlnm COS pan° Ejnanm’ (28)

where

G,
X — ;' jnm
nm Cos jnm‘r,/ + E R

jnm

sin 4,0 (29)
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The coefficients C,,A4;,, can be found in the
following way. Multiply equation (28) by
U}]/ aJ)EJMX ra COS HpTh

and integrate over the slab to give

y (1 /}
j f Tb_j' EJMXW COS ppn dqf/ d'l
oJo &

J J‘ ._ ClnAlnm COs ppn
0 JO n= 0 m= 1 j

X €08 fty)] " EjpiE jpmX pgX pme difr dip. - (30)
Interchange the order of summation and integration,

and note that

b4
J cos pcos pdnp =0 if n#p,

o]

then equation (30) becomes
r 1 ﬂ

f J ’I;,—"EJ,,qX,,q cos p, dy dy
oJo oy

b2 @©
=J cos? ppdy Y {ClnAlnm
m=1

[} (7]
X Z ( JEanEJnmJ‘ anXnm dl!’)}' (31)
V-1

Now from equation (13)

J(}Jnm an) )gnm A}nq’ (32)
and then it can be shown that [4]
B <
().lnm an EjanJnm j anXnm dl/’
V-1
dX dx,. |*
= B.E; E, —_x — 33
ﬂj jng JHM[XHM dl// ng dll/. :L,_, ( )
From condition (7)
jnm nm()fr,lj) - Ej+l nm m()']+l¢’])! (34)
and from condition (8)
dX,. dXx X,
ﬂjEjnm l// ﬂ;+1 j+1,nm dl[/ AJGI (35)
Also, from condmon (6)
dX,.
& =0, (36)
and from condition (9)
dx
o = —BX,n 37
dy B P

Then, by virtue of equations (33}+37)

Jnm ;an) Z

(ﬂ’E,,qE,m I > X aXom d./,) =0, (38)
¥i-1

H. SaLT

and hence
Jl B}EJ,,qEJ,,,,,X Xen QY =0 if m#gq (39)
4]
Noting that
b4 2 -y
L cos? pn dy = 1A (40)
where
Ao=1 if n=0,
=0 if n#0,

then substituting equations (39) and (40) into equation
(28) gives

b4 1
J‘ f TO COs pyn .(ﬂj/aj)Ejnanm dlf’/ d’l
ClnAlnm = 20 .

1
[7/(2 - An.O)] J‘o (ﬂj/aj)E)znle%m dl,b
€3]

Theintegralin the denominator of equation(41) can be
evaluated as
B
Z

J ﬁ]szl dl//
=14

W=V )(E] + G+ 345 cos [y

+y;- 1)1 sin 24, —¢;- )I(E} —G})
X 1, . - (42)
+)— sin [A{y;+y;_,)] sin [2{¢,;
j

—¥,-1)IEG;

Thetransient temperature response of the slabis fully
described by equations (22), (41} and (18) for all initial
temperature distributions within the slab. If this
happens to be separable in the two space dimensions,
then equation (41) can be separated and C;, and 4;,,,
can be determined independently.

The use of an initial temperature distribution which
is the product of two one-dimensional distributions,
provides the following useful check on any implemen-
tation of the solution. At time 6 = 0, and the point
¥ = 1 = 0in the slab, from equation (24)

mwm=§%uzm4. “3)

n=0 m=1
©

and hence in this case, ). A,,,must be a constant for
m=1

all values of ‘n’

THE THREE-LAYER COMPOSITE SLAB

In this case, f3;=03=1 and J=3 and the
transverse eigenvalues 2;,. can be found from the
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following reduced form of equation (22)

1 0
(B, 1][0 ﬂ):IQ[;s(ll/s -yl 0 B2tz
Bats
1 0 ] )
x QLA — )] 0 _ﬂl_}l_ Q[)'lwl][o]=
B222 |

which can be expressed algebraically as

[B,—25 tan Z3(1—,)]

x [1— Brdy tan A, (¢, —y,) tan i-u!n]
B12,
—[l + % tan 2, (1 —l,’/z)] [B24,
x tan A,(Yr; —y )+ B4 tan 2,9, = 0. 49
From equation (25), E, = land G, =0
E; =cos A3y cos A, + Buty
2}'2
sin A5, sin A,y (45)
and
G, =sin A, cos A, — By
ﬂ2}2
X €os A,y sin A,yr,.  (46)
Also
E; = R, cos A3, + R, sin A3¢,, 47)
and
Gy = R, sin 233, — R, cos 23,, (48)
where
Ry = c0s 22—y c0s 23y — L2
B2ta
x sin 2,(ra— ) sin 2,9y, (49)
and
R, = /337 I:sm A0py—ty) cos A, + %

x cos Ay(Y,—,) sin J.,l,(/,]. (50)

C,.A1.mcanthenbefound usingequations (41) and (42)
with J = 3.

In this form, the solution can be evaluated on a
programmable pocket calculator such as a Hewlett
Packard HP67. The determination of the transverse
eigenvalues from equation (44) is easily accommodated
on the calculator, as is the calculation of E,, G, Ey and
G, but the calculation of T using equation (24) can be
tediousifmany values of frequire the use of many terms
of the series. However, as 0 increases, only the first two
or three terms of the series become significant and the
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programmable pocket calculator is a practical tool for
use in this solution.

THE TWO-LAYER COMPOSITE SLAB

In this case, 8, = «, = | and equation (22) can be
expressed as

B, 1][0 BZJZ]Q[)z(‘/’z Vvl

1 0 1
X Bl Q[).,w,][ :l =
p 2t 0
B2,

and in algebraic form as

Biy

B,—B, _)— tan (Y, —y) tan 2,4
‘2

—2 tan A,(U3—Py)— By, tan A, = 0. (51)

E, and G, are given by equations (45) and (46) and
C1,A4 .mcanbefound usingequations(41)and (42) with
J=2

THE HOMOGENEOUS SLAB

In this case, f; = ¢, = 1 and equation (22) gives

0
e 1y 5 el ]-o

which reduces to the following well-known trans-
cendental equation for Ay, namely

Ay tan A, —B, =0, (52)

In this case, as is well known, the eigenvalues 4,
associated with the transverse coordinate ¥ are
independent of the eigenvalues p associated with the
longitudinal coordinate #. Since B, is zero, equation
(24) can be written as

Z exp{—(in+1)0}C,,

||[\/]a

X COS Y Am €08 21, (53)
and the reduced form of equation (41) is

ClnAlm

f ' f Ty cos Ay -cos i 4 dn
_ oJo
= T2 = by JTE {1 [6in 2y 005 A/}

If the initial temperature distribution in the slab is
separable, with Ty = T,({)Ty(y), then C,,, is given by

4

2—A b4
C,, =—n° I T, cos 1 dn, (53)
Y 0
and
1
'[ T, cos Ay, dyr
Alm = >

{1+ [(sin Ay, cos 21,20}

which is the familiar form found in textbooks [12].
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Hence, as was stated earlier, if the initial temperature
distribution is the product of two one-dimensional
distributions in the two space coordinates then, for the
homogeneous slab, the complete solution (53) is the
product of the two one-dimensional solutions.

CONCLUSIONS

A complete description has been derived for the
change in temperature with time at any point within a
two-dimensional, multi-layer composite slab, which is
coupled to its environment through one surface of one
layer only, after the temperature of the environment has
suffered a step change. The solution has the form of the
product of an exponential time dependency and two
spatial eigenfunctions. The eigenfunctions associated
with the space coordinate along the layers of the slab
are independent of the layers, whereas the eigenfunc-
tions associated with the space coordinate across the
slab are different in each layer. For each longitudinal
eigenvalue there is an infinite set of transverse
eigenvalues so that the transient response of the two-
dimensional composite slab can never be expressed as
the product of two one-dimensional solutions, whereas
this is sometimes possible for a homogeneous slab. A
physical interpretation of some aspects of the solution
is given elsewhere [13].

The transcendental equation which determines the
eigenvalues is expressed in matrix form for the general
multi-layer slab but algebraic forms are given {or the
three- and two-layer slabs; in this form, the solutions
aresuitable for desk calculations with a programmable
pocket calculator. It is shown that the derived solution
for the multi-layer composite slab reduces to the well-
known form for the homogeneous slab.
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CONDUCTION VARIABLE DANS UNE PLAQUE COMPOSITE BIDIMENSIONNELLE.
DEVELOPPEMENT THEORIQUE DES MODES DE TEMPERATURE

Résumé—On analyse la réponse d’une plaque bidimensionnelle, composite a plusieurs couches, & un

changement brusque de température du fluide environnant. La solution est sous la forme de séries infinies

coupléesdanslesdeux dimensions spatialesavec une dépendance exponentielledu tempset,danslecasdetrois
et deux couches, des expressions sont donées dans une forme utilisable pour les calculs de bureau.

INSTATIONARE WARMELEITUNG IN EINER ZWEIDIMENSIONALEN GESCHICHTETEN
PLATTE—I. THEORETISCHE ABLEITUNG DER LOSUNGEN FUR DIE TEMPERATUR

Zusammenfassung—Die Sprungantwort einer zweidimensionalen, mehrfach geschichteten warmeleitenden

Platte aufeine sprunghafte Anderung der Temperatur des umgebenden Fluids wurde untersucht. Die Losung

hat die Form von gekoppelten unendlichen Reihen in den zwei Raumdimensionen mit einer exponentiellen

Zeitabhingigkeit,im Fall von drei- und zweischichtigen Platten werden Losungen voneiner Form angegeben,
die fiir Berechnungen mit dem Tischrechner geeignet ist.

HEYCTAHOBUBHIAACSA NEPEJAYA TEHJIA TENJIOITPOBOJAHOCTLIO B
JBYMEPHOH KOMIMO3UTHOM IUINTE—I. TEOPETHUECKOE OMHCAHUE
TEMITEPATYPHBIX MO/J

Annorauuu—l'lpoaezlen AHAJIH3 BJIHAHHA MTHOBCHHOIO H3MEHEHHS TEMMNEPATYPHI oxpy)xarouleﬁ cpeasl

HA Nepeaayy TEnJaa TEnJaolpoBOIHOCThIO B I.IB)’MCPHOﬁ KOMINO3HTHOIT niuTe. _PCLUCHHC npeacrasjieHo

B BHAE B3aHMOCBA3AHHBIX OECKOHEYHBIX PAAOCB MO  ABYM MNPOCTPAHCTBCHHBIM KOOpAHHaTaM C

JKCIIOHEHIHATLHOIT BpCMCHHOﬁ 3aBHCHMOCTBIO. [Lnd Cﬂ}"(aﬂ TpEX- HJIH LlByXCJIOﬁHle TUTHT BBIPAKCHHA
JaHbl B y;106uo.\( AN YHCIEHHBIX pacyeToB BHOL.





